A NOVEL ELECTROSYNTHESIS OF α , α -DIMETHOXYALKANOATES FROM α -(2-BENZOTHIAZOLYLTHIO) ALKANOATES

Sigeru TORII, * Hirosi OKUMOTO, and Hideo TANAKA

Department of Industrial Chemistry, School of Engineering,

Okayama University, Okayama 700

An efficient preparation of α , α -dimethoxyalkanoates ($\underline{2}$) has been performed by electrolytic desulfurization of α -(2-benzothia-zolylthio)alkanoates ($\underline{1}$) in MeOH containing CuCl $_2$ as a catalytic additive, yielding $\underline{2}$ (94-57%) together with disulfide $\underline{3}$ (88-48%).

In our preceding papers, we reported a convenient synthesis of α -(2-benzothiazolylthio)alkanoates $[\underline{1}, R^1 = 2$ -benzothiazolyl (BT)] along with the electrolytic desulfurization of $\underline{1}$, providing efficient routes to ketones and α -substituted alkanoates. As an extention work, we described here a straightforward electrosynthesis of α , α -dimethoxyalkanoates $(\underline{2})^4$ from $\underline{1}$ ($R^1 = BT$, Ph) as shown below.

A typical electrolysis procedure is as follows: a solution of $\underline{1}$ (R = ${^{C}}_{6}H_{13}$, R^{1} = BT; 0.33 mmol) in MeOH (10 ml) containing $Et_{4}NClO_{4}$ (TEAP, 100 mg) and $CuCl_{2}$ (6 mg) was placed in a cell fitted with two platinum foil electrodes (1.5 × 2 cm²). Electrolysis was carried out under a constant current of 13.3 mA/cm², 4.5-4.8 V, changing the current direction every 30 sec, at room temperature. After 11 F/mol of electricity were passed (2.4 h), yellow precipitates were collected by filtration and washed with MeOH, yielding disulfide $\underline{3}$ (R^{1} = BT; 80%). The filtrates were concentrated in vacuo and the residue was taken up in ether, washed with brine, and dried ($Na_{2}SO_{4}$). Evaporation of the solvent followed by column chromatography gave $\underline{2}^{6}$ (83%).

Entry	α-Sulfenylalka R	noates <u>l</u> R ^l	Electrolyte	Product Acetal <u>2</u>	e, yield % ^{a)} BT-SS-BT <u>3</u>
1	^С 6 ^Н 13	вт	TAEP	83 (61)	80 (—)
2	"	11	H ₂ SO ₄	94 (53)	58 ()
3	11	11	Et ₃ N		b)
4	11	Ph	TEAP	68	59 ^{C)}
5	Me ₂ CHCH ₂	BT	11	76	77
6	"	11	H ₂ SO ₄	70	52
7	MeOCO(CH ₂) ₃	"	TEAP	57	88
8	"	"	H ₂ SO ₄	62	58
9	MeOCH ₂ CH ₂	"	TEAP	70	83
10	PhCH ₂	11	$^{ m H_2SO_4}$	63	48

Table Electrosynthesis of α , α -Dimethoxyalkanoates (2)

a) Isolated yields; number in parenthesis is a yield provided by electrolysis without adding $CuCl_2$. b) \underline{l} (78%) was recovered. c) $PhSO_2Me$; see ref. 7.

As shown in Table, the same electrolytic acetalization took place in MeOH $(10 \text{ ml}) - \text{H}_2\text{SO}_4$ (0.02 ml), in contrast to the result obtained in basic media (entry 3). It is interesting to note that the presence of CuCl_2 in the electrolysis media is fruitful. The absence of CuCl_2 brought about not only considerable decrease of the yields of the acetal $\underline{2}$, but also difficulties in recovering disulfide 3.

The reaction mechanism along with the role of CuCl_2 will be discussed elsewhere.

References and Notes

- 1) S. Torii, H. Tanaka, and H. Okumoto, Bull. Chem. Soc. Jpn., 52, 267 (1979).
- 2) (a) S. Torii, H. Tanaka, Y. Kobayasi, J. Nokami, and M. Kawada, Bull. Chem. Soc. Jpn., <u>52</u>, 1553 (1979); J. Nokami, M. Kawada, R. Okawara, S. Torii, and H. Tanaka, Tetrahedron Lett., 1979, 1045.
- 3) S. Torii, H. Okumoto, and H. Tanaka, J. Org. Chem., <u>45</u>, (1980) in press.
- 4) The conversion of $\underline{1}$ (R^1 = Et) to $\underline{2}$ on treatment with thallium trinitrate in MeOH has been reported: Y. Nagao, K. Kaneko, and E. Fujita, Tetrahedron Lett., 1978, 4115.
- 5) Disulfide $\underline{3}$ (R^I= BT) can be converted into the corresponding sulfenamides, which are the useful reagent for the preparation of $\underline{1}$: S. Torii, H. Tanaka, and M. Ukida, J. Org. Chem., 43, 3223 (1978); see also ref. 1.
- 6) All new compounds indicate the reasonable IR, ¹H NMR, and analytical data.
- 7) J. Nokami, Y. Fujita, and R. Okawara, Tetrahedron Lett., 1979, 3659.

(Received March 24, 1980)